會員登入
帳號:

密碼:

記住我



忘記密碼?

現在註冊!
計數器
今天: 1818
昨天: 5050
總計: 6155261552615526155261552
策略夥伴


粹智國際實業


彗星全腦學習中心


勞動力發展署


台灣就業通

人氣870
paul0938803 - 專區專責 | 2014-03-12 15:03:12

博弈論(Game Theory)

 

博弈論(Game Theory),博弈論是指研究多個個體或團隊之間在特定條件製約下的對局中利用相關方的策略,而實施對應策略的學科。有時也稱為對策論,或者賽局理論,是研究具有鬥爭或競爭性質現象的理論和方法,它是應用數學的一個分支,既是現代數學的一個新分支,也是運籌學的一個重要學科。

目前在生物學、經濟學、國際關係學、計算機科學、政治學、軍事戰略和其他很多學科都有廣泛的應用。主要研究公式化了的激勵結構(遊戲或者博弈(Game))間的相互作用.

 

博弈論考慮遊戲中的個體的預測行為和實際行為,並研究它們的優化策略。表面上不同的相互作用可能表現出相似的激勵結構 ( incentive structure ),所以他們是同一個遊戲的特例。其中一個有名有趣的應用例子是囚徒困境悖論 ( Prisoner's dilemma )

具有競爭或對抗性質的行為成為博弈行為。在這類行為中,參加鬥爭或競爭的各方各自具有不同的目標或利益。為了達到各自的目標和利益,各方必須考慮對手的各種可能的行動方案,並力圖選取對自己最為有利或最為合理的方案。比如日常生活中的下棋,打牌等。博弈論就是研究博弈行為中鬥爭各方是否存在著最合理的行為方案,以及如何找到這個合理的行為方案的數學理論和方法。

 

生物學家使用博弈理論來理解和預測進化論的某些結果。例如:John Maynard SmithGeorge R. Price1973年發表於Nature上的論文中提出的“evolutionarily stable strategy”的這個概念就是使用了博弈理論。還可以參見演化博弈理論(evolutionary game theory)和行為生態學(behavioral ecology)。

 

博弈論也應用於數學的其他分支,如概率論、統計和線性規劃等。

 

約翰·福布斯·納什 ( John Forbes Nash Jr. , 1950, 1951)利用不動點定理證明了均衡點的存在,為博弈論的一般化奠定了堅實的基礎。此外,塞爾頓、哈桑尼的研究也對博弈論發展起到推動作用。今天博弈論已發展成一門較完善的的學科。

 

1994年的諾貝爾經濟學獎頒發給了約翰·納什(John Nash)等三位在博弈論研究中成績卓著的經濟學家,1996年的諾貝爾經濟學獎又授予在博弈論的應用方面有著重大成就的經濟學家。由於博弈論重視經濟主體之間的相互聯繫及其辨證關係,大大拓寬了傳統經濟學的分析思路,使其更加接近現實市場競爭,從而成為現代微觀經濟學的重要基石,也為現代宏觀經濟學提供了更加堅實的微觀基礎。

博弈要素:

  (1) 局中人(players):在一場競賽或博弈中,每一個有決策權的參與者成為一個局中人。只有兩個局中人的博弈現象稱為“兩人博弈”,而多於兩個局中人的博弈稱為“多人博弈”。

 

  (2)策略(strategies):一局博弈中,每個局中人都有選擇實際可行的完整的行動方案,即方案不是某階段的行動方案,而是指導整個行動的一個方案,一個局中人的一個可行的自始至終全局籌劃的一個行動方案,稱為這個局中人的一個策略。如果在一個博弈中局中人都總共有有限個策略,則稱為“有限博弈”,否則稱為“無限博弈”。

 

  (3)得失(payoffs):一局博弈結局時的結果稱為得失。每個局中人在一局博弈結束時的得失,不僅與該局中人自身所選擇的策略有關,而且與全局中人所取定的一組策略有關​​。所以,一局博弈結束時每個局中人的“得失”是全體局中人所取定的一組策略的函數,通常稱為支付(payoff)函數。

 

  (4)次序(orders):各博弈方的決策有先後之分,且一個博弈方要作不止一次的決策選擇,就出現了次序問題;其他要素相同次序不同,博弈就不同。

 

  (5)博弈涉及到均衡:均衡是平衡的意思,在經濟學中,均衡意即相關量處於穩定值。在供求關係中,某一商品市場如果在某一價格下,想以此價格買此商品的人均能買到,而想賣的人均能賣出,此時我們就說,該商品的供求達到了均衡。所謂納什均衡,它是一穩定的博弈結果。

 

納什均衡 (Nash Equilibrium):在一策略組合中,所有的參與者面臨這樣一種情況,當其他人不改變策略時,他此時的策略是最好的。也就是說,此時如果他改變策略他的支付將會降低。在納什均衡點上,每一個理性的參與者都不會有單獨改變策略的衝動。

納什均衡點存在性證明的前提是“ 博弈均衡偶 ”概念的提出。所謂“均衡偶”是在二人零和博弈中,當局中人A採取其最優策略a*,局中人B也採取其最優策略b*,如果局中人B仍採取b*,而局中人A卻採取另一種策略a,那麼局中人A的支付不會超過他採取原來的策略a*的支付。這一結果對局中人B亦是如此。

 

這樣,“ 均衡偶的明確定義為:

一對策略a*(屬於策略集 A)和策略b*(屬於策略集B)稱之為均衡偶,對任一策略a(屬於策略集A)和策略b(屬於策略集B),總有:偶對(a, b*偶對(a*,b*)≥偶對(a*b)。

 

  對於非零和博弈也有如下定義:一對策略a*(屬於策略集A)和策略b*(屬於策略集B)稱為非零和博弈的均衡偶,對任一策略a(屬於策略集A )和策略b(屬於策略集B),總有:對局中人A的偶對(a, b*偶對(a*,b*);對局中人B的偶對(a* b偶對(a*,b*)

 

有了上述定義,就立即得到納什定理:

任何具有有限純策略的二人博弈至少有一個均衡偶。這一均衡偶就稱為納什均衡點。

納什定理的嚴格證明要用到不動點理論,不動點理論是經濟均衡研究的主要工具。通俗地說,尋找均衡點的存在性等價於找到博弈的不動點。

納什均衡點概念提供了一種非常重要的分析手段,使博弈論研究可以在一個博弈結構裡尋找比較有意義的結果。

 

 

博弈的類型

博弈的分類根據不同的基準也有不同的分類。一般認為,博弈主要可以分為合作博弈和非合作博弈。

合作博弈和非合作博弈的區別在於相互發生作用的當事人之間有沒有一個具有約束力的協議,如果有,就是合作博弈,如果沒有,就是非合作博弈。

 

從行為的時間序列性,博弈論進一步分為靜態博弈、動態博弈兩類

靜態博弈是指在博弈中,參與人同時選擇或雖非同時選擇但後行動者並不知道先行動者採取了什麼具體行動;動態博弈是指在博弈中,參與人的行動有先後順序,且後行動者能夠觀察到先行動者所選擇的行動通俗的理解:"囚徒困境"就是同時決策的,屬於靜態博弈;而棋牌類游戲等決策或行動有先後次序的,屬於動態博弈

 

按照參與人對其他參與人的了解程度分為完全信息博弈和不完全信息博弈。

完全博弈是指在博弈過程中,每一位參與人對其他參與人的特徵、策略空間及收益函數有準確的信息。

不完全信息博弈是指如果參與人對其他參與人的特徵、策略空間及收益函數信息了解的不夠準確、或者不是對所有參與人的特徵、策略空間及收益函數都有準確的信息,在這種情況下進行的博弈就是不完全信息博弈。

目前經濟學家們現在所談的博弈論一般是指非合作博弈,由於合作博弈論比非合作博弈論複雜,在理論上的成熟度遠遠不如非合作博弈論。非合作博弈又分為:完全信息靜態博弈,完全信息動態博弈,不完全信息靜態博弈,不完全信息動態博弈。與上述四種博弈相對應的均衡概念為:納什均衡 (Nash equilibrium),子博弈精煉納什均衡(subgame perfect Nash equilibrium),貝葉斯納什均衡 ( Bayesian Nash equilibrium ),精煉貝葉斯納什均衡 (perfect Bayesian Nash equilibrium)

 

博弈論還有很多分類,比如:以博弈進行的次數或者持續長短可以分為有限博弈和無限博弈;以表現形式也可以分為一般型(戰略型)或者展開型,等等。

 

博弈論的意義

博弈論的研究方法和其他許多利用數學工具研究社會經濟現象的學科一樣,都是從復雜的現像中抽像出基本的元素,對這些元素構成的數學模型進行分析,而後逐步引入對其形勢產影響的其他因素,從而分析其結果。

 

基於不同抽像水平,形成三種博弈表述方式,標準型、擴展型和特徵函數型,利用這三種表述形式,可以研究形形色色的問題。因此,它被稱為“ 社會科學的數學”從理論上講,博弈論是研究理性的行動者相互作用的形式理論,而實際上正深入到經濟學、政治學、社會學等等,被各門社會科學所應用。

 

博弈論是指某個個人或是組織,面對一定的環境條件,在一定的規則約束下,依靠所掌握的信息,從各自選擇的行為或是策略進行選擇並加以實施,並從各自取得相應結果或收益的過程,在經濟學上博弈論是個非常重要的理論概念。

 

博弈論是研究棋手們“出棋” 著數中理性化、邏輯化的部分,並將其係統化為一門科學。換句話說,就是研究個體如何在錯綜複雜的相互影響中得出最合理的策略。

事實上,博弈論正是衍生於古老的遊戲或曰博弈如像棋、撲克等。數學家們將具體的問題抽象化,通過建立自完備的邏輯框架、體系研究其規律及變化。這可不是件容易的事情,以最簡單的二人對弈為例,稍想一下便知此中大有玄妙:若假設雙方都精確地記得自己和對手的每一步棋且都是最“理性”的棋手,甲出子的時候,為了贏棋,得仔細考慮乙的想法,而乙出子時也得考慮甲的想法,所以甲還得想到乙在想他的想法,乙當然也知道甲想到了他在想甲的想法…

 

面對如許重重迷霧,博弈論怎樣著手分析解決問題,怎樣對作為現實歸納的抽像數學問題求出最優解、從而為在理論上指導實踐提供可能性呢?現代博弈理論由匈牙利大數學家馮·諾伊曼於20世紀20年代開始創立,1944年他與經濟學家奧斯卡·摩根斯 ​​特恩合作出版的巨著《博弈論與經濟行為》,標誌著現代系統博弈理論的初步形成。對於非合作、純競爭型博弈,諾伊曼所解決的只有二人零和博弈--好比兩個人下棋、或是打乒乓球,一個人贏一著則另一個人必輸一著,淨獲利為零。在這裡抽象化後的博弈問題是,已知參與者集合(兩方) ,策略集合 (所有棋著) ,和盈利集合(贏子輸子) ,能否且如何找到一個理論上的“解”或“平衡” ,也就是對參與雙方來說都最“合理” 、最優的具體策略?怎樣才是“合理” ?應用傳統決定論中的“最小最大”準則,即博弈的每一方都假設對方的所有功略的根本目的是使自己最大程度地失利,並據此最優化自己的對策,諾伊曼從數學上證明,通過一定的線性運算,對於每一個二人零和博弈,都能夠找到一個“最小最大解”。通過一定的線性運算,競爭雙方以概率分佈的形式隨機使用某套最優策略中的各個步驟,就可以最終達到彼此盈利最大且相當。當然,其隱含的意義在於,這套最優策略並不依賴於對手在博弈中的操作。用通俗的話說,這個著名的最小最大定理所體現的基本“理性”思想是“抱最好的希望,做最壞的打算”

 

博弈論與納什平衡

博弈論(game theory)對人的基本假定是:人是理性的(rational,或者說自私的),理性的人是指他在具體策略選擇時的目的是使自己的利益最大化,博弈論研究的是理性的人之間如何進行策略選擇的。

 

納什(John Nash)編制的博弈論經典故事" 囚徒的困境 ",說明了非合作博弈及其均衡解的成立,故稱" 納什平衡 "

 

所有的博弈問題都會遇到三個要素。在囚徒的故事中,兩個囚徒是當事人(players)又稱參與者;當事人所做的選擇策略(strategies)是承認了殺人事實,最後兩個人均贏得(payoffs)了中間的宣判結果。如果兩個囚徒之中有一個承認殺人,另外一個抵賴,不承認殺人,那麼承認者將會得到減刑處理,而抵賴者將會得到最嚴厲的死刑判決,在納什故事中兩個人都承認了犯罪事實,所以兩個囚徒得到的是中間的結果。

 

類似的:我們也能從“自私的基因”等理論中看到“ 納什平衡 ”的體現。

 

博弈論是非對稱信息博弈論與管理博弈論的理論基礎,非對稱信息博弈論與管理博弈論都是博弈論的應用分支。非對稱信息博弈論是非合作博弈論在經濟學上的應用,主要研究非對稱信息結構下的最優契約安排問題;管理博弈論是博弈論和非對稱信息博弈論在管理學中的應用,主要研究多目標、多因素、多階段下的管理激勵與約束機制設計問題。

 

博弈論偏重方法論研究,局中人地位平等,沒有明確的設計主體,注重定量模型化分析,研究的目的是求得博弈問題的納什均衡解。非對稱信息博弈論主要基於委託—代理理論框架下設計最優交易契約,設計主體為委託人,實施對象為代理人,委託人與代理人之間信息非對稱,委託人通過設計一種激勵機制,使代理人按他所期望的方向行動。

 

管理博弈論以管理問題為導向,設計主體是管理者,實施對像是被管理者 ( 有限理性人),管理者通過設計和建立有效的激勵與約束機制,激勵、約束、規範被管理者建立有效的激勵與約束機制,激勵、約束、規範被管理者的行為。管理博弈論對管理博弈問題的表述形式主要採用機制式表述,同時,針對具體問題也可靈活應用博弈論的戰略式表述、擴展式表述及非對稱信息博弈論的特徵函數式表述。

修自  http://wiki.mbalib.com/wiki/%E5%8D%9A%E5%BC%88%E8%AE%BA

人氣870

網友個人意見,不代表本站立場,對於發言內容,由發表者自負責任。
發表者 樹狀展開

搜尋
Weather
Copyright © 2014 粹智國際實業有限公司. All Rights Reserved. 服務洽詢電話:(02)25568189、0987-677171